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The characteristics of the electric field produced by air polarization during the passage
of nonstationary Compton currents excited by a y-ray pulse in low-density air are dis-
cussed. The influence of the field on the motion of the Compton electrons is taken into
account. The amplitude and relaxation time of the field are evaluated. A polarization
electric field is created through the action of a directed current of y-rays in air be-
cause of the movement of the Compton electrons. This paper discusses the basic char-
acteristics of the resultant field in low~density air. A similar problem was raised in

[1], where the electromagnetic field excited by a nonstationary source of y-radiation in
the upper atmosphere was considered. In that case, the Compton-electron currents were
specified and their magnitude was assumed to be proportional to the ratio between the gas
kinetic ranges of Compton electron and y-ray (this ratio is of the order of 0.01 and is in-
depenent of height}. With an increase in electron range, however, the decelerating action
of the resultant electric field on the motion of the Compton electron becomes important
(eEl/e is a criterion for the effect; E is the field intensity, and I and & are the range
and energy of the Compton electron).

1, We consider the question of the polarization field which is created in low-density air present in
an intense flux of y-radiation. The photon flux is assumed to be monoenergetic with an energy of the order
of one MeV, Two cases are analyzed in the following: in one, the time dependence of the flux intensity is
chosen to be in the form of a delta function; in the other, the time dependence is in the form of a single step
function. Although each of the corresponding results separately does not completely characterize the non-
linear system under consideration, the combination of them is sufficient, as a rule, for evaluations in the
majority of cases of practical interest. As in[2, 3], it is assumed that the Compton electrons move, on
the average, in the direction of photon propagation. It is also assumed that the resultant field changes little
in space over the range of a Compton electron. The growing conductivity of the air affects both the mag-
nitude of the temporal behavior and the variation of the field, and the conductivity, in turn, depends onthe
magnitude of the field. We shall consider that the air conductivity ¢ is due to secondary electrons which

are created by the Compton electrons and which disappear as the result of electron recombination at the
rate o,

Designating the effective mobility of the secondary electrons by k and their density by n, we can write
o = ékn

We consider the effect of the electric field E onthe deceleration of a Compton electron. If the initial
energy is €, the energy loss during electron motion is described by

—ae /dr = f (e} + ek » (1.3

where f(¢) is the ionization energy loss for an electron.
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We obtain the effective electron range from Eq. (1.1) including ionization loss in the decelerating
field:
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In first approximation, one can set f(£)=const (more accurate considerations give a very similar
result).

Then

1
= T eEl /e (1.2)

The energy expended in ionization of the air is

[*
Ae = Sﬂe(")}d"=7:§——:_~2‘lfe?
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i.e., the effect of the field leads to a reduction of the energy expended in ionization by a factor of (1+eEZ /ey).
The number of secondary electrons produced is obviously also reduced by the same ratio:

—-— 1.3
V= TR (1.3)
where v ~3- 10! is the number of ion-electron pairs formed by the absorption of 1 MeV. Using an expres-
sion for the Compton current similar tothatgiven in {2, 3] (in this case, one should use I* and v* instead
of 7 and v):

. R A
Je=€e——]Jx
Y

and for the density of secondary electron sources using
'V*
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( ly is the y-ray range, jy is the y~ray flux at the point under consideration), we obtain a closed system of
equations which describe the time variation of the field and the conductivity:

oF | ot = 4nfj, — ok}, on]ot =q—qnd (1.4)
If we introduce the dimensionless variables
the system (1.4) takes the form
=g = ()

The initial conditions for x and y are zero.
2. We consider the variation in x and y for a pulsed source, i.e,, for
i (L) = &b (D)

We designate the values of xand y for £ —+0 by x; and y,, respectively. To determine the value of x,,
we multiply the first equation of the system (1.5) by (1+x) and integrate over £ from {=—0to {= ¢ We
then have
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For ¢ — +0, the second term on the right side goes to zero,and
ZTotYsm? =1y, o wp= ]/2710 +1—1

z(g) To determine the value of y;, we note that in the second equation
of (1.5}, just as in the first, the second term onthe right side is in~
significant at the time the source is effective; consequently, the varia~
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L4 T tion in x and y at that time is described by
i
- :: Dividing one equation by the other and integrating, we have
"= 5 y (0 = he (D)
Fig. 3 Passing to the limit ¢ —+0, we have

Yo = Mo

For £ > 0, we obtain from the second equation of (1.5) {in this case, the value of y, serves as an initial
condition)

wo =y 1t + A Lt

after which, there follows from the first equation of (1.5)

z (L) = 2ol 4 AyoLIA
3. We consider the variation in x and y in the case of an n source, i.e., for
. 0 E<0)
0= o0
In the case of an n source, Egs. (1.5) are not analytically solvable. It is therefore advisable to carry

out a qualitative study of the behavior of the solutions, We consider the "phase trajectory™ of the system
in the Xy plane. An equation for it is obtained by dividing the first equation of the system (1.5) by the second:

dr 4 p—ay(i42) (3.1)

=R LD

For i;>>1, x>1 over a large portion of the phase trajectory, and Eq. (3.1) can be simplified to

dz 4 h—aty (3.2

dy T A h—

For small y, the conditions x”y «<i, and xy?«i, are satisfied, and we obtain x~y/A from Eq. (3.2).
Actually, A« 1, and therefore x>y, With an increase in ¢, x increases,and both termsin the numerator
of Eq. (3.2) are comparable.
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In this case, however, the second term in the denominator is considerably less than the first. There-
fore, over some portion of the phase trajectory, Eq. (3.2) can be replaced by the simpler equation
ox ] 0y = (i, — z*y) | Mi, (3.3)
The substitution x=i1Az§,/yz reduces Eq. (3.3) to the form

Yz, — % — Yzl i =0

The general solution of the latter equation is
2 yslx
2=y Cudp@® +Coln® (2=F37)

where I is a Bessel function of purely imaginary argument and order p. Consequently,

o (Y Caly, @+ Gy, (©)
= ( v ) Ol €+ Gl ©

Since x —C,/C, when y —0, it is necessary to set C;=0 in order to satisfy the zero initial conditions.
We finally have

iv \Ye 1y, ()

= (7) L., ® 3.4

The x(y) dependence given by Eq. (3.4) is shown in Fig. 1 (A=10"%, i,=10%. A direct calculation shows

that the neglect of the xy2 term in the denominator of Eq. (3.2) is valid up to y ~1, where the argument of
the Bessel function is considerably greater than one, and the asymptotic expression x =(i, /y)'/% can be used
for x. It is easy to see that the asymptotic behavior of x(y) corresponds to the "quasistationary" approxi-
mation which is obtained by setting the derivative of x equal to zero in Eq. (3.3). Therefore the phase tra~-
jectory of the system described by Eq. (3.2) can be approximated by the segments

[ ¥ih o 0Ty Ry
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The approximating curves are shown in Fig. 1 by the dashed lines.

X =

Analysis of the equations for i;<<1 indicates that a similar approximation to the phase trajectory is
possible in that case also. In an analysis of the behavior of the solutions of system (1.5) one can therefore
assume that the phase trajectory has the form sketched in Fig. 2 (curve oab). In this figure, the curves 1
and 2 are described by the equations

=ylh y=2x
respectively, and line 3 by the equation
y=1i/z(1 +2)
The points a and b have coordinates defined by the equations
A bz =i h Ya=Ma; P fm) =iy Y= T
The point b is a stationary point of the systém (1.5).

A typical form of the relationships x=x(¢), y = y(£), obtained from the qualitative analysis of the sys-
tem (3.1) given above, is shown in Fig. 3.

We estimate the characteristic (dimensionless) times ¢ and ¢,. From the first equation in (1.5)
there directly follows

__x (14 z) dz
C_Si1—$(1+$)y
0

For £< ¢, one can set y=Ax, and in addition x>>1 over the greater portion of the range of integra-
tion when i>>1, so that

e d:
xdx

CNS i1 — Ax3
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Making the substitution x= (i,/2)!/% in the integral, we obtain

"
b
There then follows directly
by~ i)™
Similarly, we obtain from the second equation in (1.5)

Yy
_ 1& (1 + z)dy
TR dh—{+a
D

For £,< &< £,, a considerable portion of the range of integration corresponds to the portion ab of the
phase trajectory (Fig. 2).

When i,>>1 on this portion, x= (i1/y)‘/2, so that

Ui
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There then follows

Lo ~ A7y
Evaluations of the quantities ¢ and ¢, for i<«<1 are obtained similarly. The resulis are

Lo~ (M7 Gy~ (3™

5. The analysis made of system of equations (1.5) leads to the conclusion that the variation in the
electric field at the initial period of time (£< ¢,) is mainly determined by the buildup of polarization charges
during passage of Compton currents and the conductivity of the air has no effect on the field because of
the low electron density.

When ¢ >{ 4, the field is determined by the equality of the Compton current and the conductivity cur- .
rent. In this time period (¢ < ¢,), the electron density builds up because of the continuously acting ioniza~
tion source. This leads to a rise in conductivity and therefore to a drop in the intensity of the electric field.
Subsequently, the rise in electron density ceases because of electron-ion recombination, and the system
becomes stationary when ¢ > ¢,.

Thus the quantity ¢ = ¢, can be called the relaxation time of the electric field,and the quantity ¢, the
relaxation time of the electron density. A comparison of estimates of the quantities ¢, and £, shows that
£, always, i.e., the electron density relaxes very much more slowly than the electric field,

The spatial asymmetry of a system leads to emission of a part of the energy in the form of an elec-
tromagnetic pulse. However, an analysis of the numerical solutions of such systems shows that inclusion
of the emission introduces little change in the intensity and time behavior of the fields in the immediate
area of the currents. In a spatially isotropic system a transverse (with respect to the y-ray flux) field is
absent, and the results obtained above are correct in this sense.

In conclusion, the authors thank G. M. Gandel'man for several discussions.
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