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P U L S E  

The charac te r i s t i c s  of the e lectr ic  field produced by air  polar izat ion during the passage 
of nonstat ionary Compton cur ren ts  excited by a 7 - r a y  pulse in low-densi ty air  are  dis-  
cussed.  The influence of the field on the motion of the Compton e lec t rons  is taken into 
account. The amplitude and relaxation time of the field are  evaluated. A polar izat ion 
e lectr ic  field is crea ted  through the action of a directed cur rent  of 7 - r a y s  in a i r  be-  
cause of the movement of the Compton electrons.  This paper  d iscusses  the basic char -  
ac te r i s t ics  of the resul tant  field in low-density air.  A s imi la r  problem was raised in 
[1], where the e lectromagnet ic  field excited by a nonstat ionary source of 7 - rad ia t ion  in 
the upper a tmosphere  was considered.  In that case, the Compton-elect ron cur ren t s  were 
specified and their  magnitude was assumed to be proport ional  to the rat io between the gas 
kinetic ranges of Compton electron and 3,-ray (this rat io is of the o rde r  of 0.01 and is in- 
depenent of height). With an increase  in electron range, however, the decelerat ing action 
of the resul tant  e lec t r ic  field on the motion of the Compton electron becomes  important  
( eE / / e  is a c r i t e r ion  for the effect; E is the field intensity, and I and e are  the range 
and energy of the Compton electron).  

1. We consider  the question of the polar izat ion field which is created in low-densi ty air  present  in 
an intense flux of 7- rad ia t ion .  The photon flux is assumed to be monoenerget ic  with an energy of the order  
of one MeV. Two cases  are  analyzed in the following: in one, the time dependence of the flux intensity is 
chosen to be in the fo rm of a delta function; in the other,  the time dependence is in the form of a single step 
function. Although each of the corresponding resul ts  separate ly  does not completely charac te r ize  the non- 
l inear  sys tem under consideration, the combination of them is sufficient, as a rule, for evaluations in the 
major i ty  of cases  of pract ica l  interest .  As in [2, 3], it is assumed that the Compton e lec t rons  move, on 
the average,  in the direct ion of photon propagation. It is also assumed that the resul tant  field changes little 
in space over  the range of a Compton electron.  The growing conductivity of the air  affects both the mag-  
nitude of the tempora l  behavior  and the var ia t ion of the field, and the conductivity, in turn, depends on the  
magnitude of the field. We shall consider  that the air  conductivity ~ is due to secondary  electrons which 
are  crea ted  by the Compton e lect rons  and which disappear as the resul t  of e lectron recombination at the 
rate a .  

Designating the effective mobility of the secondary e lect rons  by k and their  density by n, we can write 

(3 ~ e k n  

We consider  the effect of the e lec t r ic  field E on the decelerat ion of a Compton electron.  If the initial 
energy is ~ 0, the energy loss during e lectron motion is descr ibed by 

---~s / dr  = f (e) + eE  (1.1) 

where f ( a )  is the ionization energy loss  for  an electron. 
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field: 
We obtain the effective electron range f rom Eq. (1.1) including ionization loss in the decelerat ing 

~ 

In f i r s t  approximation, one can set f ( g ) =  const (more accura te  considerat ions give a ve ry  s imi la r  

result) .  

Then 

t + ee l  I so 

The energy expended in ionization of the air  is 

(1.2) 

l* 

A s =  f l e ( r ) i d r = . i + e ~ Z / = o  
o 

i .e. ,  the effect of the field leads to a reduction of the energy expended in ionization by a fac tor  of ( l+eEt/ le0) .  
The number of secondary  e lect rons  produced is obviously also reduced by the same ratio:  

(1.3) 
t +eEl~so 

where v ~3" 10 4 is the number  of ion-e lec t ron  pa i r s  formed by the absorption of 1 MeV. Using an expres -  
sion for  the Compton cur ren t  s imi la r  to'that given in [2, 3] (in this case,  one should use l* and v* instead 

of l and v): 
l* 

1~ ='  e - ~ - j v  

and for  the density of secondary  e lectron sources  using 

(L is the T - r a y  range, j.  is the T - r a y  flux at the point under consideration),  we obtain a closed sys tem of 
g 

equations which descr ibe  the t ime var ia t ion  of the field and the conductivity: 

~E / O t  = 4~{#k - -  ~E} ,  On t Ot = q - -  a n  ~ (1.4) 

If  we introduce the dimensionless var iables  

el E ctle ~ 4 ~ k ~  . 
x = - - i -  , y = - 6 ~ n ,  ~ = ~ t  

the sys tem (1.4) takes the form 

dx  i (~ )  x y ,  d y  ~_ ^ ( i (~)  ~] 

. / el  ~ \~ 

4 ~ e k  ' 

The initial conditions for  x and y a re  zero.  

(1.5) 

2. We consider  the variat ion in x and y for a pulsed source,  i.e., for 

(~) = ~08 (~) 

We designate the values ofx  and y for  ~ ---+ 0 by x 0 and Y0, respect ively.  To determine the value of x 0, 
we multiply the f i r s t  equation of the sys tem (1.5) by ( l+x)  and integrate over  ~ f rom ~ = - 0  to ~ = ~1- We 

then have 
4, 4,  

:(~1) " --  I zY( t  + x) d~ l ( l  §247 - - V - -  = o0 
o 0 
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F o r  ~ ~ +0,  the second  t e r m  on the  r igh t  s ide  goes  to zero ,  and 

Xo ~+ ~/~ Xo ~ = io, o~ ~o = V ' ~  - l 

To d e t e r m i n e  the value  of Y0, we note tha t  in the second  equat ion 
of (1.5), jus t  as  in the f i r s t ,  the s econd  t e r m  on t h e  r igh t  s ide  i s  in-  
s igni f icant  at the t ime  the sou rce  is ef fec t ive;  consequent ly ,  the v a r i a -  
t ion in x and y at that  t ime  is d e s c r i b e d  by 

dx ~ (~) dy ~ (~) 

Dividing one equat ion by the o ther  and in tegra t ing ,  we have 

y (~)  = ~x  (~) 

P a s s i n g  to the I i m i t [  ~ +  0, we have 

YO "~ ~X0 

F o r  ~ > 0, we obtain  f r o m  the second  equat ion of (1.5) (in this  case ,  t he  va lue  of Y0 s e r v e s  as an init ial  
condit ion) 

y(~)  = y0  [I + ~yo~1-1 

a f t e r  which,  the re  fol lows f r o m  the f i r s t  equat ion  of  (1.5) 

z (~)  = z 0 [ i  + ~ y o ~ l - m  

3. We c o n s i d e r  the v a r i a t i o n  in x a n d  y in the case  of an ~? sou rce ,  i .e . ,  fo r  

0 ( ~ < 0 )  

~(~)= ~1 ( ~ > 0 )  

In the c a s e  of  an ~? sou rc e ,  Eqs.  (1.5) a r e  not ana ly t ica l ly  so lvable .  I t  i s  t h e r e f o r e  adv isab le  to c a r r y  
out a qual i ta t ive  study of  the b e h a v i o r  of the solut ions .  We cons ide r  the "phase  t r a j e c t o r y "  of  the s y s t e m  
in the xy plane.  An equat ion fo r  it is  obta ined  by dividing the f i r s t  equat ion of the  s y s t e m  (1.5) by the second :  

d2~ l h -- zy (t + z) (3.1) 
dy - -  X h--y2(t-Jr-x)  

F o r  i~ >> 1, x >> 1 o v e r  a I a r g e  po r t i on  of  the phase  t r a j e c t o r y ,  and Eq. (3.1) can be s impl i f i ed  to 

d x =  i i t - - x ~ y  (3.2) 
dy ~ f l -  xy~ 

For  sma l l  y,  the condi t ions  x2y<<il and xy2<<il a r e  sa t i s f ied ,  and we obtain x~y/'A f r o m  Eq. (3.2). 
Actual ly ,  k<< 1, and t h e r e f o r e  x >>y. With an i n c r e a s e  in ~, x i n c r e a s e s , a n d  both t e r m s  in the n u m e r a t o r  
of Eq. (3.2) a r e  c o m p a r a b l e .  
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In this case ,  however,  the second t e r m  in the denominator  is cons iderably  l e s s  than the f i r s t .  T h e re -  
fore,  ove r  some por t ion  of the phase  t r a j ec to ry ,  Eq. (3.2) can be rep laced  by the s imp le r  equation 

Ox ]Oy  = (ij. - -  x~y) / Li x (3.3) 

The substi tut ion x = i l h z ~ / y z  reduces  Eq. (3.3) to the fo rm 

y z ~  - -  zy" - -  y~z  / i~ .  ~ = 0 

The genera l  solution of the la t te r  equation is  

z = Y [ C I I ' / , ( ~ ) + C J - ' h ( ~ ) ]  W ~ )  
( ~ =  2 y~/, 

where  Ip is  a Besse l  function of purely  imag ina ry  a rgument  and o rde r  p. Consequently,  

x ~ c~I,/, (~) + CJ_,/, (~) 

Since x ~ C 1 / C  2 when y ~ 0 ,  i t  is n e c e s s a r y  to se t  Cl= 0 in o rde r  to sa t is fy  the ze ro  initial conditions. 
We finally have 

(y ) , / ,  I,/, (~) (3.4) 
s,/~ (~) 

The x(y) dependence given by Eq. (3.4) is shown in Fig. ] (h= 10 -3, i l=  102). A di rec t  calculat ion shows 
that the neglect  of the xy 2 t e r m  in the denominator  of Eq. (3.2) is valid up to y ~ 1, where  the argument  of 
the Besse l  function is  cons iderably  g r e a t e r  than one, and the asymptot ic  express ion  x ~(i 1/y) 1/2 can be used 
for  x. I t  is easy  to see  that the asympto t ic  behav ior  of x(y) co r re sponds  to the "quas i s ta t ionary"  approxi -  
mat ion which is  obtained by set t ing the der iva t ive  of x equal to zero  in Eq. (3.3). There fo re  the phase  t r a -  
j ec to ry  of the s y s t e m  desc r ibed  by Eq. (3.2) can be approx imated  by the segments  

I y ] ~  for 0 < y 8 ] ~ 2 < i l  
x---- ( ( i l ] y ) %  for i l ~ y S / ~ i x / L  2 

The approximat ing  cu rves  a re  shown in Fig. 1 by the dashed l ines.  

Analysis  of the equations for  i1<< 1 indicates  that a s i m i l a r  approximat ion  to the phase t r a j ec to ry  is 
poss ib le  in that case  also.  In an ana lys i s  of the behavior  of the solutions of sy s t em (1.5) one can the re fo re  
a s sume  that the phase  t r a j e c t o r y  has the f o r m  sketched in Fig. 2 (curve oab). In this f igure,  the curves  1 
and 2 a re  desc r ibed  by the equations 

x = y / ~ ,  y = x  

respec t ive ly ,  and line 3 by the equation 

y = i l / x ( t  ~-z) 

The points a and b have coordina tes  defined by the equations 

xa ~ (1 ~-Xa) = i x ] L, Ya = ~'xa; Xb 2 (1 -~-Xb) = i 1, Yb = Xb 

The point b is  a s ta t ionary  point of the s y s t e m  (1.5). 

A typical  f o r m  of the re la t ionships  x = x(~), y = y(~),  obtained f rom the quali tat ive analys is  of the s y s -  
t em (3.1) given above,  is  shown in Fig. 3. 

We es t ima te  the c h a r a c t e r i s t i c  (dimensionless)  t imes  ~ 1 and ~ 2- F r o m  the f i r s t  equation in (1.5) 
there  d i rec t ly  follows 

i (t + x) dx 
~ = i l - - X ( t - ~ x )  y 

{) 

For  ~ < ~ 1, one can set  y=  Xx, and in addition x>>l ove r  the g r e a t e r  por t ion of the range  of in tegra -  
tion when i >> 1, so that  

x 

f xdx 

o 
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Making the substitution x= (ii/X)l/3u in the integral ,  we obtain 

There then follows direct ly 

1 i udu 

Similarly, we obtain f rom the second equation in (1.5) 
Y 

I ~ (1 ~ x) dy 

0 

For  ~ i < ~ < ~ 2, a considerable portion of the range of integration corresponds  to the portion ab of the 
phase t r a jec to ry  (Fig. 2). 

When i1>>1 on this portion, x= (il/y) 1/2, so that 

ztl 

o 

There then follows 

Evaluations of the quantities ~ i and ~ 2 for i << 1 are  obtained s imi lar ly .  The resul ts  a re  

�9 _llz 

5. The analysis  made of sys tem of equations (1.5) leads to the conclusion that the var ia t ion in the 
e lec t r ic  field at the initial period of t ime (~ < ~ l) is mainly determined by the buildup of polar izat ion charges  
during passage of Compton currents  and the conductivity of the a i r  has no effect on the field because of 
the low elec t ron density. 

o . When ~ > ~ 1, the field is determined by the equality of the Compton current  and the conductivity c u r -  
rent.  In this t ime period (~ < ~ 2), the electron density builds up because of the continuously acting ioniza-  
tion source.  This leads to a r i se  in conductivity and therefore  to a drop in the intensity of the e lectr ic  field. 
Subsequently, the r i se  in electron density ceases  because of e lec t ron- ion  recombination,  and the sys tem 
becomes  s ta t ionary when ~ > ~ 2- 

Thus the quantity ~ = ~ t can be called the relaxation t ime of the e lec t r ic  field, and the quantity ~ 2 the 
relaxation t ime of the e lectron density. A compar ison of es t imates  of the quantities ~ I and ~ 2 shows that 

2 >>~1 always, i.e., the electron density re laxes  very  much more  slowly than the electr ic  field. 

The spatial a symmet ry  of a sys tem leads to emiss ion of a par t  of the energy in the form of an e lec-  
t romagnet ic  pulse. However, an analysis  of the numer ica l  solutions of such sys tems  shows that inclusion 
of the emiss ion introduces  little change in the intensity and t ime behavior  of the fields in the immediate  
area  of the cur ren ts .  In a spatially isotropic  sys tem a t r ansve r se  (with respec t  to the y - r a y  flux) field is 
absent, and the resul ts  obtained above are  co r r ec t  in this sense.  

In conclusion, the authors thank G. M. Gandel 'man for severa l  discussions.  
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